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Organisms are complex systems comprising
interacting characters underlain by shared functional,
developmental and genetic processes. Within
quantitative genetics (the study of inheritance at the

phenotypic level), these relationships are summarized
in the additive GENETIC VARIANCE–COVARIANCE MATRIX G
(see Glossary). The usefulness of the quantitative
genetic approach to long-term evolution depends, 
to a large extent, on whether G remains constant or
evolves in a predictable manner. For this reason,
quantitative geneticists have increasingly turned
their attention to the evolution of G. Together with
natural selection (the ADAPTIVE LANDSCAPE) it
determines the direction and rate of evolution.

The most productive approach to the study of
evolutionary change is dictated by the importance 
of genetic details in determining the nature of that
change. In some cases, genetics might be irrelevant,
and evolution might be best approached as an
optimization problem [1]. In other cases, only 
genetic mechanisms might be worth studying [2].
Quantitative genetics is useful for intermediate cases
where genetics matters, but where genetic details 

Quantitative genetics provides one of the most promising frameworks with

which to unify the fields of macroevolution and microevolution. The genetic

variance–covariance matrix (G) is crucial to quantitative genetic predictions

about macroevolution. In spite of years of study, we still know little about how

G evolves. Recent studies have been applying an increasingly phylogenetic

perspective and more sophisticated statistical techniques to address G matrix

evolution. We propose that a new field, comparative quantitative genetics, has

emerged. Here we summarize what is known about several key questions in the

field and compare the strengths and weaknesses of the many statistical and

conceptual approaches now being employed. Past studies have made it clear that

the key question is no longer whether G evolves but rather how fast and in what

manner.We highlight the most promising future directions for this emerging field.
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Quantitative genetics provides a means for predicting 
the evolution of suites of traits given information about
directional selection and the degree of resemblance among
relatives. When only one character is selected, say z1, the
response to selection is predicted by the familiar breeder’s
equation (Eqn I),

[Eqn I]

where is the population mean; G1 is the additive genetic
variance in trait 1 and sums up the degree of resemblance
between relatives; P1 is the phenotypic variance, and S1 is
the covariance between z1 and fitness [a]. Alternatively, 
this equation can be represented as (Eqn II),

[Eqn II]

where b1 is the slope of the regression of fitness on trait 1. 
If z1 is genetically correlated with any other traits, then the
change in frequencies of genotypes affecting z1 will also
affect these other traits. This indirect response of another
trait, say z2, to selection on z1 is , where G12 is
the additive genetic covariance between z1 and z2.

In general, directional selection can affect more than
one trait, so our focal trait is affected both directly by
selection on that trait and by the selection on all other traits
correlated with it. The result is a complicated bookkeeping
problem solved by means of matrix algebra. The vector of
responses to selection is (Eqn III)

[Eqn III]

where G is the additive genetic variance–covariance matrix,
P is the phenotypic variance–covariance matrix, and S is the
vector of covariances between traits and fitness.
Variance–covariance matrices are square symmetric
matrices with as many rows and columns as there are traits
under study. The diagonal entries are the variances, and the
off-diagonal elements give the covariances between traits.
Equivalently (Eqn IV),

P−1S = β [Eqn IV]

where β is the vector of partial regression coefficients of
fitness on the traits. The elements of β give the relationship
of each trait to fitness, holding the values of other traits
constant. Lande [b,c] extended this multivariate approach
and was the first to apply it to evolutionary problems.

G is useful for predicting which kinds of evolutionary
changes are most readily accomplished. G deflects the
response to selection toward those trait combinations that
have more genetic variation. G will therefore affect the
amount of time required to reach a novel state and could
determine which state the population will ultimately
achieve [b,d] (Fig. I). Persistent absence of additive
variation for particular combinations of phenotypes would
suggest that evolution in certain directions in phenotype
space is not possible [b,e]. If G and the adaptive landscape
are indeed constant over long periods, G might be used 
to predict the evolutionary potential of a population or to
reconstruct the form of selection that has led to divergence
among populations.
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Box 1. Introduction to the G matrix and quantitative genetics
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Fig. I. Genetic constraints because of G on adaptation. (a) A
population in purple sits in an adaptive landscape with two local
optima or peaks (red) and a valley (blue). The nearer peak on the left
has higher fitness (as indicated by the magenta color) than does the
peak on the right. The population has moderate genetic variation for
both traits and no correlation or covariance between traits, as
indicated by the circular dispersion. The selective gradient (ββ) is a
measure of the strength of selection and in this graphical metaphor
is equal to the slope of the landscape. Populations will evolve uphill
owing to selection. In (a) this population would evolve directly up
the fitness peak, which is the global optimum for this region of
character space, as shown by the arrow. (b) In this example, the 
only difference is the strong covariation between traits Z1 and Z2

(e.g. Z1, length of forelimbs; Z2, length of hind limbs), producing the
acute ellipse. The G matrix describes the size and shape of the
ellipse. Both traits have similar amounts of variation to the example
in Fig. Ia, but in this example, there is almost no covariation in the
direction that selection would move the population. Instead, the
population is likely to move across the slope in the direction of
greatest variation (arrow) and could cross the shallow saddle, after
which selection would be in the same direction as the main axis of
variation. It would then evolve quickly up to the local optimum on
the right. This example illustrates that even complete knowledge of
the selective forces might not allow one to predict an evolutionary
outcome without knowledge of G.



do not. The basic quantitative genetic model (Box 1)
captures the influence of genetics through G and
indirectly through the selection gradient, which
depends on the PHENOTYPIC MATRIX P [3]. If G is stable, it
can be used to predict the evolutionary potential of a
population or to reconstruct the form of selection that
has led to divergence among populations [4] (Box 1).
Quantitative genetic parameters can also be
integrated with phylogenetic information within 
a likelihood framework to test more precisely for
adaptation [5]. If stochastic events, such as genetic
drift, fluctuating adaptive landscapes and rare
mutations, are more important, then quantitative
genetics might not be informative and macroevolution
might be decoupled from microevolution. Resolution of
this issue is crucial to evolutionary biology as a whole.

Until recently, the usefulness of a quantitative
genetic approach to evolution has been asserted or
rejected mostly on faith. Neither the high-quality data
nor the analytical tools to evaluate possible changes 
in G have been available. Here, we highlight recent
advances that are beginning to allow informative
comparisons of G matrices and discuss the questions of
if, how, how fast and why G might evolve. We suggest
that a new field of study has emerged, COMPARATIVE

QUANTITATIVE GENETICS, which has built upon traditional
comparisons of genetic variances and covariances but

which is distinguished by incorporating phylogenetic
information using the comparative method and an
emphasis on covariation among traits.

Does G evolve?

Yes. With some important statistical caveats in mind
(Box 2), there are clearly some cases where G matrices,
or some of their elements, are unequal [3,6–8]. The
significant changes in G sometimes detected by rather
small studies imply that real differences are frequently
large. Laboratory studies have demonstrated
significant divergence at the population level given
strong selection [3,9] and/or drift [10,11]. Although
matrix correlations do not test the hypothesis of
inequality, nonsignificant matrix correlations can be
interpreted as evidence for departures from equality, 
if one has confidence in the precision of the estimates.
Although comparable studies at multiple systematic
levels are few, comparisons among rodent genera
[12,13] have shown nonsignificant correlations,
whereas comparisons among and within species were
significantly correlated [14] (see reviews in [7,8,15]).
Comparisons within species usually show significant
correlation or insignificant differences [7,8,15].
Comparisons of P matrices find significant differences
even more frequently [16–19]. In summary, one cannot
assume that G is constant [6,20].
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A major issue for any comparative quantitative genetic study is statistical
power. The genetic variance components that comprise G, the genetic
variance–covariance matrix, have large sampling errors [a], and so
measurements of hundreds of families are usually necessary to provide
reasonable power for comparisons. By contrast, sample size for P, the
phenotypic variance–covariance matrix, is the number of individuals,
where sample size for G depends on the number of families, usually far
less than the number of individuals. Estimating G normally requires
controlled breeding programs; P does not. Because most G matrix
studies use fewer families, studies are biased towards confirming the
null hypothesis. Interpretation is, however, complicated by the use of
diametrically opposed null hypotheses, common among older methods
of comparing G matrices. Matrix correlations test the null hypothesis of
no similarity between matrices [b], whereas maximum-likelihood [c] or
element-by-element comparisons test the null hypothesis that matrices
or a subset of their elements are equal. Few studies have adequately
addressed limitations of power when trying to compare covariances
[d,e], and the power of more versatile methods, such as common
principal components analysis (CPCA), is currently unknown [f].

Findings of matrix similarity are also highly dependent on the model
being tested. Principal components analysis (PCA), the parent technique
on which CPCA depends, transforms the data from the space of the
original variables, which are correlated, to a set of vectors that are
uncorrelated. It captures all of the variation in the original data, whilst
concentrating the variation explained in a few vectors. The forte of PCA is
therefore summarizing high-dimensional data with fewer, uncorrelated
variables. Flury developed CPCA to summarize multigroup data in as few
vectors as possible [g–j], but evolutionary biologists often have the loftier
goal of diagnosing and understanding the differences between matrices,
and the method has significant shortcomings for this purpose [f].

The default implementation of CPCA orders vectors to be compared
by the amount of variance explained. If these first vectors differ,
matrices are declared unrelated. It is biologically plausible that
populations might differ in the first vector, often size in morphological
data sets, but have similarities in other aspects of variation. CPC 
vectors can be considered in any order, and the Phillips software [k]
allows such reordering. PCA also constrains all of the vectors to be

orthogonal (uncorrelated), so the vectors with large amounts of
variation constrain the directions of all other vectors. Flury [h,l]
proposed a more general approach, called common space analysis,
which, in principle, allows any set of vectors to be compared. We know
of no other implementations of common space analysis. Alternative
methods of finding hidden similarities in matrix structure are needed.
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Box 2. Comparing matrices: power and model dependence



How do G matrices differ?

Although G can change, understanding those aspects
of G that change could allow many informative
predictions about evolution to be made. For example,
absence of variation for some phenotypic
combinations would predict that those phenotypic
combinations cannot evolve [21]. Conversely, those
combinations with the most genetic variation might
be more likely to evolve [22]. Roff [15] has focused
attention on whether matrices remain linearly
related to each other, because an expectation is that, 
if drift is the only force causing differences in G, all
elements of G would tend to increase or decrease in
concert. Several statistical techniques that allow
more subtle questions about G to be addressed have
recently been implemented (Table 1). We focus our
discussion on common principal component analysis
(CPCA), because of its recent surge in popularity.

Maximum-likelihood methods [23] can be 
used to test a wide variety of hypotheses about
variance–component matrices as well as about
equality. With a well-estimated data set, this method
permits statistically precise statements about which
parts of the matrix differ and by how much, usually
through the separate analysis of submatrices. This
approach deserves wider application.

CPCA, and the subsequent use of the Flury
hierarchy of hypothesis tests [24], has recently been
adapted for use with variance–component matrices,
such as G [25]. The Flury hierarchy determines how

many of the principal components-based vectors
differ among matrices. The method can thus
discriminate matrices with a wide variety of levels of
shared structure, including equality (not significantly
different), proportionality (unequal, but the hypothesis
of proportional eigenvalues is not rejected), CPC,
partial CPC, and unrelated (no shared structure; 
see Box 3 and previous reviews [16,25]). Publicly
available software [26,27] has now made CPCA the
method of choice for comparing P matrices [19] and 
G matrices [8].

Any conclusions regarding matrix similarity
depend strongly on the model being tested (Box 2). 
For all its advantages, the CPCA method makes
sequential comparisons of orthogonal vectors. A
finding that two matrices are ‘unrelated’ in a CPCA
does not mean that there are no similarities, but
rather that all of the tested null hypotheses fit less
well than do the alternative hypothesis of no
similarity. For example, Steppan’s [16] CPCA of
P matrices never found common structure among leaf-
eared mice Phyllotis spp. By contrast, sample-size-
adjusted matrix correlations averaged 0.93 among
species, indicating that matrices were still very
similar. Studies of P typically show a complete loss of
CPC structure (e.g. dropping from proportional to
unrelated) with more inclusive clades, rather than a
sequential loss of the smaller EIGENVECTORS. That is,
PC1 often differs among very similar matrices, leading
CPCA to declare them ‘unrelated’. The development 
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Table 1. Methods for matrix comparison

Method Approach Strengths Weaknesses Refs
a

Element x element t-test Detailed, isolates specific elements No synthesis, ignores nonindependence of elements [6,55]
Matrix correlation Correlation, Overall measure of similarity Does not distinguish among many types of [12–14,54,

  permutation tests   difference; ignores proportional changes; pairwise   56]
  comparisons only; easily influenced by a few
  shared values; improper hypothesis-testing
  framework

Matrix regression Regression Estimates of proportionality Can be strongly influenced by outliers (especially in [4,15]
  covariance matrices); improper hypothesis-testing
  framework

Disparity Overall measure of difference, most No clear metric; no integral statistical model [33]
  easily applied to phylogenetic data

Maximum likelihood Likelihood Statistical power, applicable at Pairwise comparisons only, does not compare [3,6,23,57]
  several levels   matrix structure

CPCA Principal components Statistical power, hierarchy of Orthogonality of components might not reflect [8,11,16–19,
  models; multiple comparisons   biology; does not incorporate nonindependence   24,25,

  owing to phylogeny   29–31,40]
CPC for dependent Principal components Based on CPC method; takes extra Same limitations as CPC approach, with even more [58,59]
  vectors   covariance patterns (e.g. growth,   restrictions on the pattern of shared relationships

  environment) into account   across covariance sets; has yet to be extended for
  genetic covariance components

Matrix pattern Correlation Nonparametric model of matrix Shares all of the problems of matrix correlation; [60]
  structure derived from functional   unclear how to compare different models
  and/or developmental models

Confirmatory factor Factor analysis; linear Tests explicit structural models that Not well developed for comparative analyses; has [42]
  analysis   models   can be biologically motivated;   yet to be extended to genetic covariance

  allows hypothesis testing of   components
  different models

aPlease note that the references are examples and are not necessarily comprehensive.



of more general models of similarity is needed 
(Table 1). An alternative approach is to explore the
dimensionality of G (Box 4), which might be able to
detect conservation of underlying structure that the
CPCA model might miss.

How fast do G matrices change?

This now appears to be the crucial question given 
the observation that G can evolve. The diversity of
methods used in published studies makes comparison
of their results difficult. Comparisons among closely
related populations most frequently show no
significant differences [7]. Considering P as well as G
in the increasing number of CPCA studies (only three
sets of studies [8,25,28,29] have applied CPCA to G),
findings have ranged from proportionality [19,29] to no
shared structure [18,30], to intermediate conditions
with several CPCs [11,16,18,31]. In some cases, the
degree of shared CPC structure depends strongly on
the method of data standardization [32]. Above the
species level, most studies [7] find significant
differences in G. In addition, no published study (of
G or P) among subspecies or at more inclusive
taxonomic levels has accepted shared structure at more
than the first two to three eigenvectors [16,17,19,28].
Thus, G or P are usually not significantly different
among phenotypically similar populations, but
statistically significant differences are the norm among
phenotypically divergent populations (e.g. subspecies
and species [33]). Comprehensive multitaxon studies
are needed to confirm these tentative conclusions
about the rates of G matrix evolution.

The rate of G matrix evolution is best determined
through the comparative approach. When characters
evolve slowly relative to cladogenesis, the COMPARATIVE

METHOD is needed to account for phylogeny (to avoid
correlations among observations [34]) – in this case
matrices – and to estimate more accurately the
direction and rate of evolution. Just as several
methods can be used to compare two matrices, there
are several approaches to structuring comparative
analyses: single-pair comparisons, hierarchical
multigroup comparison and ancestral reconstruction.

All but one [14] study of G have compared just
two taxa . Such comparisons contain no phylogenetic
information and therefore cannot determine direction
of change.

A second approach is the hierarchical application
of matrix-comparison methods, particularly those
that can analyse multiple matrices, such as CPCA. 
In CPCA, for example, all members of a clade are
analysed together for shared structure, and the
analysis is repeated for all clades [16]. Another
application is to conduct all pairwise comparisons
among members of a clade, taxon, or taxonomic
category, [16] and partition the comparisons among
categories or ranks. However, this incorporates
minimal phylogenetic information and the degrees 
of freedom must be reduced to reflect the multiple
comparisons. Interpretation of hierarchical analyses
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Figure I illustrates the hierarchy of models in common
principal components analysis (CPCA). Compared to the
root ancestor A, ancestor C and descendants 1, 2 and 3
are unequal but proportional. The eigenvectors
(orientation of axes) are the same, whereas the
eigenvalues (variances along each axis) all differ by a
scalar amount. Descendant 5 shares the eigenvectors
with ancestor A, but the eigenvalues for the two axes 
do not differ by the same amount. Thus, they share 
a common principal component (CPC) structure
(proportionality is a special case of CPC). Descendant 4
differs by both orientation and relative variances and
therefore for these two dimensions, shares no common
structure with A (unrelated). If, however they did share
other axes for dimensions not plotted here, then
descendant 4 and ancestor A would share partial CPC
(PCPC). Thus, several levels in the hierarchy are portrayed
by taxa in reference to the root ancestor A; equality (B),
proportionality (C, 1–3), CPC (5) and unrelated (4). Further
discussion of the CPC hierarchy can be found in [a,b].
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Box 3. Evolution of matrices
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Fig. I. Hypothetical evolution of genetic variance–covariance
matrices on a phylogeny. Text below branches summarizes changes
along a lineage (branch). Length of each branch is proportional to 
the magnitude of change in covariance structure as estimated by, 
for example, matrix disparity (except for the branch from A to B, 
which should have zero length but is expanded for visual clarity).
Ancestors A, B, and C and descendents 1, 2, and 3 all share
proportional matrices. The total variation among them has changed,
but the pattern of covariation has not. Text above the nodes
indicates degree of shared principal component structure expected
to be revealed by CPCA given the changes along the branches.
Ancestral matrices are shown here but cannot be observed directly
in most real groups. Estimation of ancestral matrices, like that of any
character, can be difficult under bias or lineage variation in rates [c].
For example, the ancestor associated with arbitrary CPC model (B)
would not be estimated accurately; the information from the highly
divergent descendant would skew the estimate. Also, although
three of four extant taxa in the clade share proportionality with the
ancestor, CPCA would probably detect no shared structure among
the four because of the one divergent taxon, 4.



becomes more difficult as the number of lineages
increases (Box 3).

The third and potentially most powerful method 
is ancestral reconstruction, which allows change to 
be partitioned among branches of a phylogeny [33]
(Box 3). Once ancestral matrices are estimated, any 
of the matrix-comparison methods (Table 1) can be
employed. Unfortunately, significant error can also
arise in estimating ancestors [35], and that problem is
likely to be exacerbated with correlated multivariate
data. Uncertainty can be accommodated in a likelihood
or bayesian framework [36]. In addition, although
comparative studies of individual characters can
sometimes verify ancestral conditions from fossils,
such verification will be difficult for variances, which
are properties of populations. G will almost always be
impossible to measure for ancestors (but see [37]), but
P can sometimes be estimated. The most commonly
used application of this general approach, independent
contrasts [34], is unlikely to be appropriate to the
questions asked by quantitative geneticists, because 
it tests evolutionary correlations over time rather 
than decomposing the nature of changes. Maximum
likelihood methods, already applied to univariate 
data [35], can be modified for correlated multivariate
data, although the errors involved in those estimates
can be very high for biologically interesting features
that vary significantly.

Why do G matrices change?

Given the many evolutionary forces that are expected
to buffet G, the observed differences in G matrix

structure are not surprising. Mutation, selection,
genetic drift and migration are all expected to affect G
[20,38]. A more productive focus might therefore be 
on cases in which G might be expected to retain
shared structure over time. Genetic drift provides an
obvious starting point, because drift in a population 
of reduced effective size is expected to cause a
proportional shrinking of all elements in G. This
expectation has been proposed by Roff as a way to
distinguish the effects of drift and selection [15]:
proportional changes in G matrix structure are
ascribed to drift and nonproportional changes to
selection. Although appealing, this dichotomy has 
a flaw. Although proportionality is the theoretical
expectation for drift, a great deal of variation around
this expectation is likely. A large study on the effects
of drift on wing morphology in Drosophila has
demonstrated the extent of this variation [11]. Given
enough time, any pattern of divergence among
G matrices would probably be compatible with the
hypothesis of drift. More generally, matrices may
diverge by drift even when the effective sizes of the
populations are equal. We note that CPCA and
Roff ’s test differ in the definition of proportionality;
elements related by a scalar multiplier versus linear
regression constrained to pass through the origin as a
predictor of elements, respectively. Much more work
is needed on the nature of the variance in G generated
by drift and on identifying the timescales that are
actually relevant for divergence, which are especially
important for providing a meaningful null hypothesis
against which comparative analyses can be tested.

Both selection and mutation can also maintain
similarity in G matrix structure under certain
circumstances [38]. In particular, when the pattern of
correlational selection matches the pattern of genetic
covariation, selection can maintain this association
[38]. Mutation might be the most important player 
in this process. Long-term evolution of G might be
dominated by the pattern of pleiotropic mutation. 
We know little about the nature of pleiotropic
mutations [39] (the M matrix) and certainly have 
no observations of the relationship between M and
variation in G among populations. There have been
few studies of M, but induced mutations can cause
significant changes in M within species [28] and,
consequently, to G and P as well [40]. Ultimately, the
evolution of G will be guided by all of the forces that
affect the evolution of genetic variance itself. In this
case, a comparative approach might actually yield
new insights, because the multivariate nature of the
data allows one to ask how evolutionary forces are
influencing the covariance structure of an entire 
suite of characters rather than trying to tease apart
multiple influences on a single trait.

Comparative quantitative genetics should be
strongly influenced by, and potentially influence, the
emerging synthesis between functional developmental
genomics and studies of quantitative variation
(e.g. [41]). First, finer-scale genetic information,
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An alternative perspective on the role of the genetic variance–covariance matrix, G,
as an evolutionary constraint is to examine its dimensionality. The data from a
quantitative genetic study exist in a space with axes defined by each trait in the
study – if many traits are studied, the phenotype space has many dimensions. If
one could plot all the breeding values from a study, they might fall in a subspace 
of this phenotype space. For three traits, phenotype space has a dimensionality of
three, but we might find that all the points fall on a plane, so the data reside in a
2D space. One would then predict that evolution would be restricted to the plane.
A matrix in which the dimensionality of the data is lower than the dimensionality 
of the phenotype is called a singular matrix.

CPC provides one framework to explore dimensionality, but Kirkpatrick et al. [a]
proposed and implemented several approaches to estimate explicitly the
dimensionality of genetic variation. Their techniques were developed for the more
complex case where one is interested in genetic variation in a biological function, such
as a growth trajectory, but they could easily be applied to the typical point estimates of
genetic parameters. Application of these techniques to data sets on growth in several
mammals suggests that only a few aspects of growth and form could be shown to
be genetically variable [b]. Kirkpatrick et al.’s techniques are mostly modifications
of more widely used techniques in multivariate analysis and might not represent
optimal solutions to this statistical problem. More research on this problem is
needed. Surprisingly little empirical attention has been paid to dimensionality of G,
even though it is frequently mentioned in the literature on constraints [c].
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Box 4. Dimensionality of G



especially regarding relationships among traits, is
needed for modeling long-term evolution of G. Second,
developmental models can be turned into statistical
models of covariance structure [42], which will be
needed for more meaningful comparisons among
matrices. Observations about the evolution of G
might provide insights into the forces affecting G and
more importantly into the underlying processes that
generate the covariance structure in the first place
[43]. A comparative approach to G matrix evolution
should provide insights into macroevolutionary
changes in developmental structure.

Are G and P matrices similar?

The elements of P can be estimated much more
accurately than can those of G (Box 2), because
sampling errors scale with the inverse of the sample
size. This has led some researchers to suggest that 
the P matrix will provide a more precise estimate of
the form of G [8,44,45] should they be proportional.
The P matrix is the sum of the G matrix and all other
sources of covariation, including genetic covariance
not contained in G, and environmental covariation (E).
Both genetic and nongenetic causes of covariance can
be structured by the functional architecture that
underlies the traits. If each hormone or regulatory
gene that helps to build a trait provides an
opportunity for both genetic and nongenetic effects 
to occur, then genetic and nongenetic variances will
be correlated. This hypothesis can be tested by a
direct comparison of G and E [8]. Consistent with 
this notion, genetic and phenotypic variances are 
very highly correlated [46,47]. However, there are 
many reasons why G and P might depart from
proportionality [48]. Comparisons of P have typically
found more divergence more frequently than have
comparisons of G, particularly within species.

Roff [44] tested the correlation of P and G by a
survey of the literature. He found that phenotypic 
and genetic correlations were as correlated with 
each other as could be expected if they only differed
because of sampling errors. The correspondence was
particularly good for morphological traits, which tend
to have high heritabilities (i.e. G is a large proportion
of P). Evolutionary forces, such as genetic drift, 

might be expected to have different effects on
G and E, and thereby lead to divergence in P even if
these underlying matrices share similarities [11].
Particular phenotypic and genetic correlations
certainly differ significantly in some cases, but,
overall, there is surprisingly little empirical 
evidence to reject the hypotheses that P and G are
proportional. Further testing of this conjecture is still
needed. Nearly all of the multitaxon comparisons to
date have involved P matrices [16,17,19,30,33,49]
rather than G matrices, presumably because of this
disparity in ease of estimation.

Conclusions and future directions

Clearly, G can evolve. The important questions now
are what parts of G evolve, what is the rate at which G
evolves, and how does that rate compare to the rate of
speciation, population differentiation and changes in the
adaptive landscape? Empirical and theoretical studies
are needed, as are new or improved analytical methods.
Empirical studies are needed to test assumptions about
the relationship between Gand P, for example. Perhaps
the greatest need is for studies that robustly estimate
G for multiple taxa. The most efficient approach might
be to study taxa related to those that have already
been studied and to build on earlier studies rather
than duplicating them. With thoughtful species
selection, this approach can also be used to expand
morphological diversity. The clade containing the
well-studied mouse Mus and rat Rattus, for example,
includes many ecologically and morphologically
divergent species, including grazing and earthworm
specialists. Greater diversity can also be achieved by
including groups outside the model organisms that
have been the primary focus of past studies.
Developmental [50] and integrative [51] approaches
have great potential to provide explicit hypotheses,
which would provide stronger theoretical and
mechanistic frameworks for the study of changes in G.

The greatest need on the analytical side is for
improved methods of matrix comparison that are
statistically powerful, biologically meaningful, robust
and that allow decomposition of the data. Although
CPCA has been widely adopted, we see it as an
interim method that will remain useful only 
until more appropriate methods are developed.
Modifications of factor analytic methods, such as
confirmatory factor analysis [42] or common space
analysis [24], which relax the assumption of
orthogonality in PCA methods, are potential next
steps. Provided that G does not evolve quickly with
respect to the species and clades of interest to
evolutionary biologists, improved methods of
ancestral reconstruction for multivariate data should
be a focus of comparative studies. The field is also
hampered even in formulating scientific questions 
by the difficulties of visualizing such complex data.
New visualization techniques are being developed
(e.g. [52]) and could be adapted to, or new ones
developed for, evolutionary studies.
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Adaptive landscape: a representation of the forces of natural selection where phenotypic trait
values are the X and Y coordinates and mean fitness is the elevation.
Comparative quantitative genetics: the comparative study of quantitative genetic parameters,
especially covariance matrices, across populations or species.
Comparative method: the application of phylogenetic information to cross-taxon comparisons.
CPCA: common principal components analysis; a generalization of principal components
analysis extended to multiple matrices.
Eigenvectors: latent or characteristic-roots of the variance–covariance matrix; they define the
orientation in multidimensional space of the orthogonal axes of maximum variation.
Genetic variance–covariance matrix: a symmetrical matrix that summarizes the additive genetic
contribution to the variances of and covariances between phenotypic traits. G matrix or
G covariance matrix are shorthand references.
Phenotypic matrix: phenotypic variance–covariance matrix, measured directly for a population
without partitioning out genetic and environmental contributions.

Glossary
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Finally, we have only begun to ask some of 
the most interesting questions. For example, is
G evolution decoupled from phenotypic evolution?
That appears to be the case with P matrices in
Phyllotis [16] and G within Clarkia dudleyana [53].
The G matrix, treated as a character in its own right,

can be used to explore the evolution of developmental
systems and their role in phenotypic evolution. 
A comparative quantitative genetic approach 
should provide a natural linkage between studies
concentrating primarily on genetic details and those
focusing on long-term phenotypic outcomes.


